If it's not what You are looking for type in the equation solver your own equation and let us solve it.
(G)=4G^2-484.
We move all terms to the left:
(G)-(4G^2-484.)=0
We get rid of parentheses
-4G^2+G+484.=0
We add all the numbers together, and all the variables
-4G^2+G+484=0
a = -4; b = 1; c = +484;
Δ = b2-4ac
Δ = 12-4·(-4)·484
Δ = 7745
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$G_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$G_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$G_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(1)-\sqrt{7745}}{2*-4}=\frac{-1-\sqrt{7745}}{-8} $$G_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(1)+\sqrt{7745}}{2*-4}=\frac{-1+\sqrt{7745}}{-8} $
| -1=2(3x-2)-8x-3 | | 5q+2=-33 | | j/4=11/2 | | 96-x=192 | | 3/4(8x+4)=2/3(6x-9) | | `-10-(-2)=2x-4(x+2)+2x` | | 4x−21=3(−2x+3) | | 5x+7=(-15x-1)/3+3/4 | | 5(3c+9)=150 | | 14y2–12y=0 | | 3q-5=6q-8 | | 13.72+0.05x=14.22+0.09x | | g+49=21 | | -10x+4=2(-5x+2) | | 14y2–12y=0 | | 2(2x+1)-8x+10=6 | | q+23=q+12 | | 1+4y=-5+7y | | 14=3g−–2 | | 7g+7=84 | | 1=2(3x-5)-3x-1 | | 3x–21=3 | | -2=4(x+1)-x-3 | | −5+2c=6c+11 | | 15.69+0.13x=16.46+0.15x | | r+31/2=−42/3 | | x+5/2x=42 | | 17x+-67=137 | | 4+6x=3+8x | | (3x+10)°(3x+8)°=90° | | 3+5n=5(n+2)-7 | | 5(3c+8)=150 |